M• – sigma relation for intermediate-mass black holes in globular clusters

17 Apr

[2013A&A…555A..26L] Lützgendorf, N.; Kissler-Patig, M.; Neumayer, N.; Baumgardt, H.; Noyola, E.; de Zeeuw, P. T.; Gebhardt, K.; Jalali, B.; Feldmeier, A.

Screen Shot 2015-04-17 at 11.02.08For galaxies hosting supermassive black holes (SMBHs), it has been observed that the mass of the central black hole (M) tightly correlates with the effective or central velocity dispersion (sigma) of the host galaxy. The origin of this M – sigma scaling relation is assumed to lie in the merging history of the galaxies, but many open questions about its origin and the behavior in different mass ranges still need to be addressed. The goal of this work is to study the black-hole scaling relations for low black-hole masses, where the regime of intermediate-mass black holes (IMBHs) in globular clusters (GCs) is entered. We collected all existing reports of dynamical black-hole measurements in GCs, providing black-hole masses or upper limits for 14 candidates. We plotted the black-hole masses versus different cluster parameters including total mass, velocity dispersion, concentration, and half-mass radius. We searched for trends and tested the correlations to quantify their significance using a set of different statistical approaches. For correlations with a high significance we performed a linear fit, accounting for uncertainties and upper limits. We find a clear correlation between the mass of the IMBH and the velocity dispersion of the GC. As expected, the total mass of the GC then also correlates with the mass of the IMBH. While the slope of the M – sigma correlation differs strongly from the one observed for SMBHs, the other scaling relations M – Mtot, and M – L are similar to the correlations in galaxies. Significant correlations of black-hole mass with other cluster properties were not found in the present sample.